Home Tech Support

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Monday, 18 March 2013

A Less-Seen View of Angular Momentum

Posted on 07:16 by Unknown
Many people learn in basic physics classes that angular momentum is a scalar quantity that describes the magnitude and direction of rotation, such that its rate of change is equal to the sum of all torques $\tau = \dot{L}$, akin to Newton's equation of motion $\vec{F} = \dot{\vec{p}}$. People who take more advanced physics classes, such as 8.012 — Physics I, learn that in fact angular momentum and torque are vectors; in the case of fixed-axis rotation, the moment of inertia (the rotational equivalent to mass) is a scalar so $\vec{L} = I\vec{\omega}$ means that angular momentum points in the same direction as angular velocity. By contrast, in general rigid body motion, the moment of inertia becomes anisotropic and becomes a tensor, so \[\vec{L} = \stackrel{\leftrightarrow}{I} \cdot \vec{\omega}\] implies that angular momentum is no longer parallel to angular velocity, but instead the components are related (using Einstein summation for convenience) by \[L_i = I_{ij} \omega_{j}.\] This becomes important in the analysis of situations like gyroscopes and torque-induced precession, torque-free precession, and nutation.

There is one problem though: there is nothing particularly vector-like about angular momentum. It is constructed as a vector essentially for mathematical convenience. The definition $\vec{L} = \vec{x} \times \vec{p}$ only works in 3 dimensions. Why is this? Let's look at the definition of the cross product components: in 3 dimensions, the permutation tensor has 3 indices, so contracting it with 2 vectors produces a third vector $\vec{c} = \vec{a} \times \vec{b}$ such that $c_i = \varepsilon_{ijk} a_{j} b_{k}$. One trick that is commonly taught to make the cross product easier is to turn the first vector into a matrix and then perform matrix multiplication with the column representation of the second vector to get the column representation of the resulting vector: the details of this rule are hard to remember, but the source is simple, as it is just $a_{ij} = \varepsilon_{ijk} a_{k}$. Now let us see what happens to angular velocity and angular momentum using this definition. Angular velocity was previously defined as a vector through $\vec{v} = \vec{\omega} \times \vec{x}$. We know that $\vec{x}$ and $\vec{v}$ are true vectors, while $\vec{\omega}$ is a pseudovector (defined by it flipping direction when the coordinate system undergoes reflection), so $\vec{\omega}$ is vector to be made into a tensor. Using the previous definition that in 3 dimensions $\omega_{ij} = \varepsilon_{ijk} \omega_{k}$, then \[v_i = \omega_{ij} x_{j}\] now defines the angular velocity tensor. Similarly, angular momentum is a pseudovector, so it can be made into a tensor through $L_{ij} = \varepsilon_{ijk} L_{k}$. Substituting this into the equation relating angular momenta and angular velocities yields \[L_{ij} = I_{ik} \omega_{kj}\] meaning the matrix representation of the angular momentum tensor is now the matrix multiplication of the matrices representing the moment of inertia and angular velocity tensors.

This has another consequence: the meaning of the components of the angular velocity and angular momentum become much more clear. Previously, $L_{j}$ was the generator of rotation in the plane perpendicular to the $j$-axis, and $\omega_{j}$ described the rate of this rotation: for instance, $L_z$ and $\omega_z$ relate to rotation in the $xy$-plane. This is somewhat counterintuitive. On the other hand, the tensor definitions $L_{ij}$ and $\omega_{ij}$ deal with rotations in the $ij$-plane: for example, $L_{xy}$ generates and $\omega_{xy}$ describes rotations in the $xy$-plane, which seem much more intuitive. Also, with this, $L_{ij} = x_{i} p_{j} - p_{i} x_{j}$ becomes a definition (though there may be a numerical coefficient that I am missing, so forgive me).

The nice thing about this formulation of angular velocities and momenta as tensor quantities is that this is generalizable to 4 dimensions, be it 4 spatial dimensions or 3 spatial and 1 temporal dimension (as in relativity). $L_{\mu \nu} = x_{\mu} p_{\nu} - p_{\mu} x_{\nu}$ now defines the generator of rotation in the $\mu\nu$-plane. Similarly, $\omega_{\mu \nu}$ defined in $L_{\mu \nu} = I_{\mu}^{\; \xi} \omega^{\xi}_{\; \nu}$ describes the rate of rotation in that plane. The reason why these cannot be vectors any more is that the permutation tensor gains an additional index, so contracting it with two vectors yields a tensor with 2 indices; this means that the cross product as laid out in 3 dimensions does not work in any other number of dimensions (except, interestingly enough, for 7, and that is because a 7-dimensional Cartesian vector space can be described through the algebra of octonions which does have a cross product, just as 2-dimensional vectors can be described by complex numbers and 3-dimensional vectors can be described by quaternions).

This has further nice consequence for special relativity. The Lorentz transformation as given in $x^{\mu'} = \Lambda^{\mu'}_{\; \mu} x^{\mu}$ is a hyperbolic rotation through an angle $\alpha$, equal to the rapidity defined as $\alpha = \tanh(\beta)$. A hyperbolic rotation is basically just a normal rotation through an imaginary angle. This can actually be seen by transforming to coordinates with imaginary time (called a Wick rotation, which may come back up in a post in the near future): $x^{\mu} = (ct, x^{j}) \rightarrow (ict, x^{j})$, allowing the metric to change as $\eta_{\mu \nu} = \mathrm{diag}(-1, 1, 1, 1) \rightarrow \delta_{\mu \nu}$. This changes the rapidity to just be a real angle, and the Lorentz transformation becomes a real rotation. Because only the temporal coordinate has been made imaginary while the spatial coordinates have been left untouched, because the Lorentz transformation is now a real rotation, and because angular momentum generates real rotations, then it can be said that the angular momentum components $L_{(0, j)}$ generate Lorentz boosts along the $j$-axis. This fact remains true even if the temporal coordinate is not made imaginary and the metric remains with an opposite sign for the temporal component, though the math of Lorentz boost generation becomes a little more tricky. That said, typically the conservation of angular momentum implies symmetry of the system under rotation, thanks to the Noether theorem. Naïvely, this would imply that conservation of $L_{(0, j)}$ is associated with symmetry under the Lorentz transformation. The truth is a little more complicated (but not by too much), as my advisor and I found from a few Internet searches. Basically, in nonrelativistic mechanics, just as momentum is the generator of spatial translation, position is the generator of (Galilean) momentum boosting: this can be seen in the quantum mechanical representation of momentum in the position basis $\hat{p} = -i\hbar \frac{\partial}{\partial x}$, and the analogous representation of position in the momentum basis $\hat{x} = i\hbar \frac{\partial}{\partial p}$. If the system is invariant under translation, then the momentum is conserved and the system is inertial, whereas if the system is invariant under boosting, then the position is conserved and the system is fixed at a given point in space. In relativity, the analogue to a Galilean momentum boost is exactly the Lorentz transformation, so conservation of $L_{(0, j)}$ corresponds to the system being fixed at its initial spacetime coordinate; this is OK even in relativity because spacetime coordinates are invariant geometric objects, even if their components transform covariantly.

There are a few remaining issues with this analysis. One is that rotations in 3 dimensions are just sums of pairs of rotations in planes, and rotations in 4 dimensions are just sums of pairs of rotations in 3 dimensions. This relates in some way (that I am not really sure of) to symmetries under special orthogonal/unitary transformations in those dimensions. In dimensions higher than 4, things get a lot more hairy, and I'm not sure if any of this continues to hold. Also, one remaining issue is that in special relativity, because the speed of light is fixed and finite, rigid bodies cease to exist except as an approximation, so the description of such dynamics using a moment of inertia tensor generalized to special relativity may not work anymore (though the description of angular momentum as a tensor should still work anyway). Finally, note that the generalization of particle momentum $p_{\mu}$ to a distribution of energy lies in the stress-energy tensor $T_{\mu \nu}$, so the angular momentum of such a distribution becomes a tensor with 3 indices that looks something like (though maybe not exactly like) $L_{\mu \nu \xi} = x_{\mu} T_{\nu \xi} - x_{\nu} T_{\mu \xi}$. In addition, stress-energy tensors with relativistic angular momenta may change the metric itself, so that would need to be accounted for through the Einstein field equations. Anyway, I just wanted to further explore the formulations and generalizations of angular momentum, and I hope this helped in that regard.
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Posted in class, college, mathematics, MIT, physics | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • How-To: Get My Desktop with MATE in Ubuntu
    Installing MATE Patches Finally, the busiest part of my week is over, and I have time to write this. Anyway, Ubuntu 12.04 LTS "Precise ...
  • Review: Sabayon 6 KDE
    Sabayon needs no introduction here, considering I've reviewed 4 previous versions of it here. So why am I reviewing Sabayon 6 KDE? Main ...
  • Review: Chakra 2013.02 "Benz"
    Main Screen + KDE Kickoff It's been a while since I looked at Chakra, so I was thinking now might be a good time to do that. Plus, KDE 4...
  • FOLLOW-UP: SOPA: The Year of the Zombie Internet
    This one's a quickie. It's just that I mailed a whole bunch of letters to my senators and representative expressing my opposition to...
  • Revisited: KDE 4.6
    Main Screen I recently tried reviewing KDE 4.6 , and it didn't turn out so well due to the combination of my installing KDE 4.6 in a liv...
  • Review: Fuduntu 2013.2
    I haven't checked out Fuduntu in over a year. I wasn't particularly planning to do so either, because I wasn't exactly expecting...
  • Featured Comments: Week of 2011 February 6
    There were only a couple of posts that garnered a few comments this past week, so I'll post all of those. Review: Debian 6 "Squeeze...
  • Featured Comments: Week of 2011 March 6
    Once again, I was afraid that I wouldn't write a post like this, but thankfully that hasn't happened. There were a handful of commen...
  • Review: Manjaro Linux 0.8.0 Xfce
    Main Screen + Xfce Menu I was busy at home for the last two weeks with many people coming and going; plus, I never had any other reason to p...
  • Review: KDE 4.6
    A couple days ago, KDE 4.6 was released for the world to enjoy. It boasts myriad bug fixes, new features for applications like Dolphin and M...

Categories

  • 11
  • 13
  • 1st birthday
  • 200th post
  • 2010
  • 2011
  • 2012
  • 2D
  • 3 Idiots
  • 3D
  • 4
  • 600-series
  • 600C
  • 670C
  • 7
  • 7z
  • 8 glasses every day
  • A Short History of Nearly Everything
  • Abiword
  • abuse of copyright
  • Acer
  • ACTA
  • Activities
  • Adafruit
  • admission
  • Adobe
  • Adobe Flash
  • advertisement
  • Afghanistan
  • agricultural company
  • airport security
  • Albert-Laszlo Barabasi
  • amarok
  • amateur
  • amazon
  • Amy Chua
  • anaconda
  • android
  • AP
  • apology
  • apple
  • applications
  • April fools
  • aptosid
  • Arch
  • ArchBang
  • Arizona
  • asana
  • asthma
  • asus
  • Athena
  • ati
  • ATT
  • AUSTRUMI
  • autofailblog
  • autonomy
  • avatar
  • ayurveda
  • bad experience
  • ban
  • basmati rice
  • Ben Kevan
  • bias
  • Big Bang
  • big brother
  • Bill Bryson
  • biography
  • birthday
  • blackbox
  • blind
  • blog
  • blog catalog
  • Blogger
  • Blogilo
  • Blogspot
  • BMW
  • Bodhi Linux
  • bombing in russia
  • Book Review
  • bootloader
  • boson
  • brand name
  • break
  • breakfast cereal
  • Bridge Linux
  • British Chiropractic Association
  • broadcast
  • browser
  • BSD
  • Burj Khalifa
  • Bursts
  • bus
  • cable
  • calculus
  • cambridge
  • canonical
  • capitalism
  • care
  • Carolus Linnaeus
  • cell
  • cell phone
  • CentOS
  • central planning
  • CGS
  • Chak De India
  • Chakra
  • Chamber of Commerce
  • chat
  • cheese webcam booth
  • chemistry
  • chicken
  • chicken tax
  • china
  • choice
  • choqok
  • Chrome OS
  • Chromium
  • chrysler
  • Cinnamon
  • Cinnarch
  • City ID
  • class
  • codecs
  • coffee
  • college
  • commodore
  • Commonwealth Games
  • comparison
  • compatibility
  • competition
  • compositing
  • conference
  • congress
  • copyright
  • copyright infringement
  • corruption
  • counterfeiting
  • courts
  • Creative Commons
  • crunchbang linux
  • cryptography
  • crystal
  • CSS
  • CTKArchLive
  • custom linux spin
  • CwF + RtB
  • Daniel Craig
  • Das U-Blog by Prashanth
  • DEB
  • debian
  • debt
  • Dedoimedo
  • deficit
  • democrat
  • denial
  • Department of Justice
  • derivative
  • desktop effects
  • Die Another Day
  • disability
  • disappointment
  • disney
  • distribution
  • DMCA
  • DNA
  • dolphin
  • donation
  • dormitory
  • dream
  • DreamWorks
  • driver
  • DRM
  • Dubai
  • dvd
  • earthquake
  • Ease
  • ebook
  • economics
  • Edmunds
  • Edubuntu
  • education
  • educational
  • EFF
  • electricity
  • elementary
  • empathy
  • Enlightenment
  • enzo tedeschi
  • EPDFView
  • epiphany
  • essay
  • Evince
  • exam
  • excitement
  • eye of gnome
  • F-Spot
  • facebook
  • Faenza
  • familiarity
  • family
  • FBI
  • Featured Comments
  • fedora
  • Fedora Core
  • Feedbooks
  • felicia
  • Fermat's Last Theorem
  • Ferris Bueller's Day Off
  • fifa
  • file sharing
  • first
  • First Amendment
  • first sale
  • Fluxbox
  • Folder View
  • FOLLOW-UP
  • football
  • ford
  • free software
  • FreeTechie
  • frequency
  • FreshOS
  • frisk
  • frivolous
  • Fuduntu
  • Fusion
  • future
  • FVWM
  • Gabrielle Giffords
  • Gauss
  • GDM
  • gentoo
  • George Lucas
  • GhostBSD
  • GIMP
  • Gloobus
  • gloria
  • glyn moody
  • gm
  • Gnash
  • gnome
  • GNOME 3
  • GNOME Activities
  • GNOME Shell
  • gnu
  • Gnumeric
  • google
  • Google Docs
  • Gottfried Leibniz
  • government intervention
  • gparted
  • graduation
  • graphics card
  • GRUB
  • gtk+
  • GUI
  • gwenview
  • gwibber
  • Hackers
  • happy new year
  • hardware
  • Harry Potter
  • health
  • heartbeat
  • Higgs
  • high speed rail
  • hollywood
  • homeland security
  • homeless
  • honda
  • How To Train Your Dragon
  • How-To
  • hp
  • HTC
  • HTML
  • i386
  • ibm
  • Ice
  • Iceweasel
  • identity
  • In Defense of Food
  • incentives
  • Inception
  • india
  • Infinite Monkey Theorem
  • Inside Line
  • installation
  • Intel
  • intellectual monopoly
  • intellectual property
  • internet explorer
  • internship
  • Investopedia
  • ipad
  • iphone
  • iphone OS
  • ipod touch
  • Iraq
  • iron man 2
  • Isaac Newton
  • isadora
  • issues
  • ITworld
  • jailbreak
  • James Bond
  • james cameron
  • japanese
  • jill sobule
  • jim lynch
  • jon
  • Julia
  • Julian Assange
  • justice
  • KahelOS
  • Katya
  • KDE
  • kde 3.5
  • KDE 4
  • kde 4.4
  • KDE 4.5
  • KDE 4.6
  • KDE 4.7
  • KDE Activities
  • KevJumba
  • keyboard
  • Kinect
  • KOffice
  • kolourpaint
  • Kongoni
  • konqueror
  • Kopete
  • Kororaa
  • kpackagekit
  • KPresenter
  • kubuntu
  • kwin
  • Lage Raho Munna Bhai
  • laptop
  • last week of school
  • Latvia
  • law
  • lawsuit
  • learning experience
  • LED
  • legal fees
  • lenny
  • Leonard Mlodinow
  • LG
  • liar
  • libel
  • liberal
  • LibreOffice
  • LILO
  • linux
  • linux live cd
  • Linux Mint
  • Linux Today
  • Lisa
  • live cd
  • live dvd
  • live usb
  • long
  • Lubuntu
  • lunatic
  • LXAppearance
  • lxde
  • LXPanel
  • mac
  • mac os x
  • Madbox
  • madurai
  • Mageia
  • mainstream tech press
  • malware
  • mandriva
  • Manjaro Linux
  • marginal cost
  • mark shuttleworth
  • Mark Zuckerberg
  • market
  • market share
  • massacre
  • mastery
  • MATE
  • mathematics
  • Mayans
  • MBodhi Linux
  • mcps
  • meat
  • mebibyte
  • media
  • media companies
  • medicine
  • MEEP
  • Megabus
  • megabyte
  • mepis
  • Metacity
  • metric system
  • MGSE
  • Michael Nielsen
  • Michael Pollan
  • mickey mouse
  • microsoft
  • microsoft office
  • middle
  • Midori
  • misconceptions
  • misrepresentation
  • MIT
  • MLB
  • Mokshagundam
  • money
  • monopoly
  • mouse
  • movie
  • Movie Review
  • Mozilla
  • Mozilla Firefox
  • Mozilla Prism
  • mpaa
  • multiboot
  • MultiSystem
  • MWM
  • national health service
  • national security
  • nautilus
  • NCAA
  • ncurses
  • netbook
  • Netrunner
  • neutrino
  • new computer
  • new york
  • new york city
  • new zealand
  • newbie
  • news corp
  • NFL
  • NHS
  • NIST
  • normal distribution
  • novell
  • numbers
  • nutrition science
  • nutritionism
  • NVidia
  • NZCS
  • obama
  • okular
  • One
  • open standards
  • open-source
  • openbox
  • openoffice.org
  • opensolaris
  • openSUSE
  • Opera
  • oracle
  • Oxidized Trinity
  • P. W. Singer
  • panel
  • paramount
  • Pardus
  • parenting
  • parody
  • particle
  • patent
  • pay-to-pirate
  • PC-BSD
  • pclinuxos
  • pcmanfm
  • Pear OS
  • pearson education
  • Peppermint OS
  • Peter Pan
  • philosophy
  • Photograph 51
  • photonic
  • PHP
  • physics
  • pidgin
  • Pierce Brosnan
  • Pinguy OS
  • pink
  • Pink Floyd
  • piracy
  • plasma
  • plasmoid
  • poll
  • Porteus
  • power
  • power law
  • prejudice
  • presentation
  • president
  • president obama
  • presumption of innocence
  • Princeton
  • printing
  • prisoner
  • privacy
  • profit
  • programming
  • progress
  • Project Natal
  • promotion
  • proprietary
  • public domain
  • purpose
  • qed
  • QEMU
  • qt
  • quantum electrodynamics
  • quantum mechanics
  • radio
  • rape
  • Rawhide
  • Razor-Qt
  • red hat
  • Reflection
  • Rekonq
  • religion
  • Remastersys
  • rent
  • repossession
  • republican
  • retroactive copyright
  • review
  • rewards
  • RHEL
  • RIAA
  • Righthaven
  • RMA
  • robotics
  • rolling release
  • rootkit
  • ROSA
  • royalty
  • RPM
  • RSS
  • rule
  • rupert murdoch
  • sabayon
  • safari
  • saints
  • Salix OS
  • Samsung
  • sarah palin
  • Saudi Arabia
  • scanner
  • school
  • school network
  • science
  • Scientific Linux
  • security theater
  • selection
  • semester
  • Semplice
  • senior
  • Shiki
  • shooting
  • Shotwell
  • shut down
  • SI
  • sidux
  • Simon Singh
  • simplymepis
  • Skype
  • skyscraper
  • Slackware
  • slander
  • slashdot
  • social media
  • social policy
  • socialism
  • software patents
  • solar
  • SolusOS
  • SolydXK
  • sony
  • sony-bmg
  • SOPA
  • Source Code
  • SourceForge
  • SPARC
  • special effects
  • spying
  • spyware
  • Squeeze
  • SSH
  • Star Wars
  • State Department
  • statin
  • statistical mechanics
  • Statler
  • Stella
  • steve jobs
  • stewart
  • Stuxnet
  • subscriber
  • subsidy
  • substitute
  • sun
  • Sun Tzu
  • super bowl
  • Super Bowl XLV
  • super user
  • Suresh Kalmadi
  • survey
  • Symbicort
  • synaptic
  • tablet
  • Talledega Nights
  • tax
  • tech company
  • Tech Drive-in
  • techdirt
  • Technorati
  • Ted Williams
  • terrorist
  • thanksgiving
  • The Adjustment Bureau
  • The Amazing Race
  • The Art of War
  • The Code Book
  • The Drunkard's Walk
  • The King's Speech
  • The Social Network
  • the tunnel
  • the undercover economist
  • thermophotovoltaic
  • thunar
  • tim
  • Tim Harford
  • tint2
  • torrent
  • Toy Story 3
  • toyota
  • tracking device
  • trademark
  • train
  • treason
  • Trinity
  • Trisquel
  • trivial
  • troll
  • TSA
  • TuxMachines
  • Twitter
  • TWM
  • UberBang
  • ubuntu
  • ubuntu one
  • UK
  • unetbootin
  • unintended acceleration
  • units
  • Unity
  • Unixoid Review
  • UROP
  • US
  • utopia
  • V. S. Narayana Rao
  • VectorLinux
  • vegan
  • vegetarian
  • Verizon
  • vesa
  • Viewnior
  • ViewPad
  • ViewSonic
  • violation
  • virtual desktop
  • VirtualBox
  • virus
  • Visvesvaraya
  • vlc
  • warfare
  • water
  • WattOS
  • wavelength
  • Wayland
  • web-connected printer
  • webcam
  • WebOS
  • weekly
  • whistle
  • widget
  • wifi
  • wiki
  • Wikileaks
  • William Shakespeare
  • windowing system
  • WindowMaker
  • windows
  • windows 7
  • windows vista
  • windows xp
  • Wired for War
  • word
  • WordPress
  • world cup
  • Wubi
  • x11
  • XBMC
  • xbox360
  • xfce
  • xkcd
  • xp
  • yahoo
  • yoga
  • YouTube
  • YSA
  • Zenwalk
  • Zorin OS

Blog Archive

  • ▼  2013 (63)
    • ►  September (4)
    • ►  August (9)
    • ►  July (3)
    • ►  June (9)
    • ►  May (7)
    • ►  April (10)
    • ▼  March (11)
      • Featured Comments: Week of 2013 March 24
      • Review: Pardus 2013 KDE
      • Hamiltonian Density and the Stress-Energy Tensor
      • Schrödinger and Biot-Savart
      • Review: Linux Mint MATE 201303
      • Time and Temperature are Complex
      • Nonzero Electromagnetic Fields in a Cavity
      • A Less-Seen View of Angular Momentum
      • Frictions, Subsidies, and Taxes
      • More on 2012 Fall
      • More on My Photonic Crystal UROP
    • ►  February (6)
    • ►  January (4)
  • ►  2012 (85)
    • ►  December (4)
    • ►  November (3)
    • ►  October (2)
    • ►  September (6)
    • ►  August (8)
    • ►  July (12)
    • ►  June (12)
    • ►  May (7)
    • ►  April (6)
    • ►  March (6)
    • ►  February (9)
    • ►  January (10)
  • ►  2011 (179)
    • ►  December (5)
    • ►  November (8)
    • ►  October (9)
    • ►  September (12)
    • ►  August (15)
    • ►  July (15)
    • ►  June (15)
    • ►  May (16)
    • ►  April (15)
    • ►  March (19)
    • ►  February (21)
    • ►  January (29)
  • ►  2010 (173)
    • ►  December (24)
    • ►  November (23)
    • ►  October (34)
    • ►  September (36)
    • ►  August (15)
    • ►  July (18)
    • ►  June (13)
    • ►  May (8)
    • ►  April (2)
Powered by Blogger.

About Me

Unknown
View my complete profile