Home Tech Support

  • Subscribe to our RSS feed.
  • Twitter
  • StumbleUpon
  • Reddit
  • Facebook
  • Digg

Wednesday, 27 March 2013

Hamiltonian Density and the Stress-Energy Tensor

Posted on 13:44 by Unknown
As an update to a previous post about my adventures in QED-land for 8.06, I emailed my recitation leader about whether my intuition about the meaning of the Fourier components of the electromagnetic potential solving the wave equation (and being quantized to the ladder operators) was correct. He said it basically is correct, although there are a few things that, while I kept in mind at that time, I still need to keep in mind throughout. The first is that the canonical quantization procedure uses the potential $\vec{A}$ as the coordinate-like quantity and finds the conjugate momentum to this field to be proportional to the electric field $\vec{E}$, with the magnetic field nowhere to be found directly in the Hamiltonian. The second is that there is a different harmonic oscillator for each mode, and the number eigenstates do not represent the energy of a given photon but instead represent the number of photons present with an energy corresponding to that mode. Hence, while coherent states do indeed represent points in the phase space of $(\vec{A}, \vec{E})$, the main point is that the photon number can fluctuate, and while classical behavior is recovered for large numbers $n$ of photons as the fluctuations of the number are $\sqrt{n}$ by Poisson statistics, the interesting physics happens for low $n$ eigenstates or superpositions thereof in which $a$ and $a^{\dagger}$ play the same role as in the usual quantum harmonic oscillator. Furthermore, the third issue is that only a particular mode $\vec{k}$ and position $\vec{x}$ can be considered, because the electromagnetic potential has a value for each of those quantities, so unless those are held constant, the picture of phase space $(\vec{A}, \vec{E})$ becomes infinite-dimensional. Related to this, the fourth and fifth issues are, respectively, that $\vec{A}$ is used as the field and $\vec{E}$ as its conjugate momentum rather than using $\vec{E}$ and $\vec{B}$ because the latter two fields are coupled to each other by the Maxwell equations so they form an overcomplete set of degrees of freedom (or something like that), whereas using $\vec{A}$ as the field and finding its conjugate momentum in conjunction with a particular gauge choice (usually the Coulomb gauge $\nabla \cdot \vec{A} = 0$) yields the correct number of degrees of freedom. These explanations seem convincing enough to me, so I will leave those there for the moment.

Another major issue that I brought up with him for which he didn't give me a complete answer was the issue that the conjugate momentum to $\vec{A}$ was being found through \[ \Pi_j = \frac{\partial \mathcal{L}}{\partial (\partial_t A_j)} \] given the Lagrangian density $\mathcal{L} = \frac{1}{8\pi} \left(\vec{E}^2 - \vec{B}^2 \right)$ and the field relations $\vec{E} = -\frac{1}{c}\partial_t \vec{A}$ & $\vec{B} = \nabla \times \vec{A}$. This didn't seem manifestly Lorentz-covariant to me, because in the class 8.033 — Relativity, I had learned that the conjugate momentum to the electromagnetic potential $A^{\mu}$ in the above Lagrangian density would be the 2-index tensor \[ \Pi^{\mu \nu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} .\] This would make a difference in finding the Hamiltonian density \[ \mathcal{H} = \sum_{\mu} \Pi^{\mu} \partial_t A_{\mu} - \mathcal{L} = \frac{1}{8\pi} \left(\vec{E}^2 + \vec{B}^2 \right). \] I thought that the Hamiltonian density would need to be a Lorentz-invariant scalar just like the Lagrangian density. As it turns out, this is not the case, because the Hamiltonian density represents the energy which explicitly picks out the temporal direction as special, so time derivatives are OK in finding the momentum conjugate to the potential; because the Lagrangian and Hamiltonian densities looks so similar, it looks like both could be Lorentz-invariant scalar functions, but deceptively, only the former is so. At this point, I figured that because the Hamiltonian and (not field conjugate, but physical) momentum looked so similar, they could arise from the same covariant vector. However, there is no "natural" 1-index vector with which to multiply the Lagrangian density to get some sort of covariant vector generalization of the Hamiltonian density, though there is a 2-index tensor, and that is the metric. I figured here that the Hamiltonian and momentum for the electromagnetic field could be related to the stress-energy tensor, which gives the energy and momentum densities and fluxes. After a while of searching online for answers, I was quite pleased to find my intuition to be essentially spot-on: indeed the conjugate momentum should be a tensor as given above, the Legendre transformation can then be done in a covariant manner, and it does in fact turn out that the result is just the stress-energy tensor \[ T^{\mu \nu} = \sum_{\mu, \xi} \Pi^{\mu \xi} \partial^{\nu} A_{\xi} - \mathcal{L}\eta^{\mu \nu} \] (UPDATE: the index positions have been corrected) for the electromagnetic field. Indeed, the time-time component is exactly the energy/Hamiltonian density $\mathcal{H} = T_{(0, 0)}$, and the Hamiltonian $H = \sum_{\vec{k}} \hbar\omega(\vec{k}) \cdot (\alpha^{\star} (\vec{k}) \alpha(\vec{k}) + \alpha(\vec{k}) \alpha^{\star} (\vec{k})) = \int T_{(0, 0)} d^3 x$. As it turns out, the momentum $\vec{p} = \sum_{\vec{k}} \hbar\vec{k} \cdot (\alpha^{\star} (\vec{k}) \alpha(\vec{k}) + \alpha(\vec{k}) \alpha^{\star} (\vec{k}))$ doesn't look similar just by coincidence: $p_j = \int T_{(0, j)} d^3 x$. The only remaining point of confusion is that it seems like the Hamiltonian and momentum should together form a Lorentz-covariant vector $p_{\mu} = (H, p_j)$, yet if the stress-energy tensor respects Lorentz-covariance, then integrating over the volume element $d^3 x$ won't respect transformations in a Lorentz-covariant manner. I guess because the individual components of the stress-energy tensor transform under a Lorentz boost and the volume element does as well, then maybe the vector $p_{\mu}$ as given above will respect Lorentz-covariance. (UPDATE: another issue I was having but forgot to write before clicking "Publish" was the fact that only the $T_{(0, \nu)}$ components are being considered. I wonder if there is some natural 1-index Lorentz-convariant vector $b_{\nu}$ to contract with $T_{\mu \nu}$ so that the result is a 1-index vector which in a given frame has a temporal component given by the Hamiltonian density and spatial components given by the momentum density.) Overall, I think it is interesting that this particular hang-up was over a point in classical field theory and special relativity and had nothing to do with the quantization of the fields; in any case, I think I have gotten over the major hang-ups about this and can proceed reading through what I need to read for the 8.06 paper.
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Posted in class, college, MIT, physics, qed, quantum electrodynamics, quantum mechanics | No comments
Newer Post Older Post Home

0 comments:

Post a Comment

Subscribe to: Post Comments (Atom)

Popular Posts

  • Long-Term Review: openSUSE 12.2 KDE
    I did this long-term review on my normal UROP desktop computer with the 64-bit edition of the OS. Follow the jump to see how it fared. Also ...
  • How-To: Make Xfce Like Unity
    This is more or less the sequel to this post. It came about because I wanted to see if it would be easy to make Xfce look like Apple's ...
  • SourceForge, Pages, and Respins
    I may have mentioned this in a previous post, but I have added new static pages to this blog. I wanted to mention this again as I will proba...
  • Review: Trisquel 4.0.1 LTS "Taranis"
    Main Screen + Main Menu I've read a couple of reviews of Trisquel GNU/Linux, an Ubuntu-based distribution which aims to remove as much n...
  • Review: Fedora 18 "Spherical Cow" GNOME
    Although I have reviewed a number of Fedora remixes, I haven't reviewed proper Fedora since the very first review/comparison test I post...
  • Review: KDE 4.6
    A couple days ago, KDE 4.6 was released for the world to enjoy. It boasts myriad bug fixes, new features for applications like Dolphin and M...
  • A Disappointing Review of #! 10 "Statler"
    Before I say anything else, I'd just like to say that the reason why I haven't posted anything in 2 weeks has been due to me being q...
  • Review: Linux Mint 14.1 "Nadia" MATE + GNOME 3/Cinnamon
    Wow. It's been a really long time since I've had the time to sit down and do a review like this. The reason for that is because this...
  • Review: Pardus 2013 KDE
    My spring break is coming to an end (I only have 1.5 more days), so I figured it might be nice to do another review while I still can. Today...
  • Review: Slackware 13.1
    KDE Main Screen I never envisioned myself trying out any of the more advanced distributions like Slackware, Arch, or Gentoo, but having trie...

Categories

  • 11
  • 13
  • 1st birthday
  • 200th post
  • 2010
  • 2011
  • 2012
  • 2D
  • 3 Idiots
  • 3D
  • 4
  • 600-series
  • 600C
  • 670C
  • 7
  • 7z
  • 8 glasses every day
  • A Short History of Nearly Everything
  • Abiword
  • abuse of copyright
  • Acer
  • ACTA
  • Activities
  • Adafruit
  • admission
  • Adobe
  • Adobe Flash
  • advertisement
  • Afghanistan
  • agricultural company
  • airport security
  • Albert-Laszlo Barabasi
  • amarok
  • amateur
  • amazon
  • Amy Chua
  • anaconda
  • android
  • AP
  • apology
  • apple
  • applications
  • April fools
  • aptosid
  • Arch
  • ArchBang
  • Arizona
  • asana
  • asthma
  • asus
  • Athena
  • ati
  • ATT
  • AUSTRUMI
  • autofailblog
  • autonomy
  • avatar
  • ayurveda
  • bad experience
  • ban
  • basmati rice
  • Ben Kevan
  • bias
  • Big Bang
  • big brother
  • Bill Bryson
  • biography
  • birthday
  • blackbox
  • blind
  • blog
  • blog catalog
  • Blogger
  • Blogilo
  • Blogspot
  • BMW
  • Bodhi Linux
  • bombing in russia
  • Book Review
  • bootloader
  • boson
  • brand name
  • break
  • breakfast cereal
  • Bridge Linux
  • British Chiropractic Association
  • broadcast
  • browser
  • BSD
  • Burj Khalifa
  • Bursts
  • bus
  • cable
  • calculus
  • cambridge
  • canonical
  • capitalism
  • care
  • Carolus Linnaeus
  • cell
  • cell phone
  • CentOS
  • central planning
  • CGS
  • Chak De India
  • Chakra
  • Chamber of Commerce
  • chat
  • cheese webcam booth
  • chemistry
  • chicken
  • chicken tax
  • china
  • choice
  • choqok
  • Chrome OS
  • Chromium
  • chrysler
  • Cinnamon
  • Cinnarch
  • City ID
  • class
  • codecs
  • coffee
  • college
  • commodore
  • Commonwealth Games
  • comparison
  • compatibility
  • competition
  • compositing
  • conference
  • congress
  • copyright
  • copyright infringement
  • corruption
  • counterfeiting
  • courts
  • Creative Commons
  • crunchbang linux
  • cryptography
  • crystal
  • CSS
  • CTKArchLive
  • custom linux spin
  • CwF + RtB
  • Daniel Craig
  • Das U-Blog by Prashanth
  • DEB
  • debian
  • debt
  • Dedoimedo
  • deficit
  • democrat
  • denial
  • Department of Justice
  • derivative
  • desktop effects
  • Die Another Day
  • disability
  • disappointment
  • disney
  • distribution
  • DMCA
  • DNA
  • dolphin
  • donation
  • dormitory
  • dream
  • DreamWorks
  • driver
  • DRM
  • Dubai
  • dvd
  • earthquake
  • Ease
  • ebook
  • economics
  • Edmunds
  • Edubuntu
  • education
  • educational
  • EFF
  • electricity
  • elementary
  • empathy
  • Enlightenment
  • enzo tedeschi
  • EPDFView
  • epiphany
  • essay
  • Evince
  • exam
  • excitement
  • eye of gnome
  • F-Spot
  • facebook
  • Faenza
  • familiarity
  • family
  • FBI
  • Featured Comments
  • fedora
  • Fedora Core
  • Feedbooks
  • felicia
  • Fermat's Last Theorem
  • Ferris Bueller's Day Off
  • fifa
  • file sharing
  • first
  • First Amendment
  • first sale
  • Fluxbox
  • Folder View
  • FOLLOW-UP
  • football
  • ford
  • free software
  • FreeTechie
  • frequency
  • FreshOS
  • frisk
  • frivolous
  • Fuduntu
  • Fusion
  • future
  • FVWM
  • Gabrielle Giffords
  • Gauss
  • GDM
  • gentoo
  • George Lucas
  • GhostBSD
  • GIMP
  • Gloobus
  • gloria
  • glyn moody
  • gm
  • Gnash
  • gnome
  • GNOME 3
  • GNOME Activities
  • GNOME Shell
  • gnu
  • Gnumeric
  • google
  • Google Docs
  • Gottfried Leibniz
  • government intervention
  • gparted
  • graduation
  • graphics card
  • GRUB
  • gtk+
  • GUI
  • gwenview
  • gwibber
  • Hackers
  • happy new year
  • hardware
  • Harry Potter
  • health
  • heartbeat
  • Higgs
  • high speed rail
  • hollywood
  • homeland security
  • homeless
  • honda
  • How To Train Your Dragon
  • How-To
  • hp
  • HTC
  • HTML
  • i386
  • ibm
  • Ice
  • Iceweasel
  • identity
  • In Defense of Food
  • incentives
  • Inception
  • india
  • Infinite Monkey Theorem
  • Inside Line
  • installation
  • Intel
  • intellectual monopoly
  • intellectual property
  • internet explorer
  • internship
  • Investopedia
  • ipad
  • iphone
  • iphone OS
  • ipod touch
  • Iraq
  • iron man 2
  • Isaac Newton
  • isadora
  • issues
  • ITworld
  • jailbreak
  • James Bond
  • james cameron
  • japanese
  • jill sobule
  • jim lynch
  • jon
  • Julia
  • Julian Assange
  • justice
  • KahelOS
  • Katya
  • KDE
  • kde 3.5
  • KDE 4
  • kde 4.4
  • KDE 4.5
  • KDE 4.6
  • KDE 4.7
  • KDE Activities
  • KevJumba
  • keyboard
  • Kinect
  • KOffice
  • kolourpaint
  • Kongoni
  • konqueror
  • Kopete
  • Kororaa
  • kpackagekit
  • KPresenter
  • kubuntu
  • kwin
  • Lage Raho Munna Bhai
  • laptop
  • last week of school
  • Latvia
  • law
  • lawsuit
  • learning experience
  • LED
  • legal fees
  • lenny
  • Leonard Mlodinow
  • LG
  • liar
  • libel
  • liberal
  • LibreOffice
  • LILO
  • linux
  • linux live cd
  • Linux Mint
  • Linux Today
  • Lisa
  • live cd
  • live dvd
  • live usb
  • long
  • Lubuntu
  • lunatic
  • LXAppearance
  • lxde
  • LXPanel
  • mac
  • mac os x
  • Madbox
  • madurai
  • Mageia
  • mainstream tech press
  • malware
  • mandriva
  • Manjaro Linux
  • marginal cost
  • mark shuttleworth
  • Mark Zuckerberg
  • market
  • market share
  • massacre
  • mastery
  • MATE
  • mathematics
  • Mayans
  • MBodhi Linux
  • mcps
  • meat
  • mebibyte
  • media
  • media companies
  • medicine
  • MEEP
  • Megabus
  • megabyte
  • mepis
  • Metacity
  • metric system
  • MGSE
  • Michael Nielsen
  • Michael Pollan
  • mickey mouse
  • microsoft
  • microsoft office
  • middle
  • Midori
  • misconceptions
  • misrepresentation
  • MIT
  • MLB
  • Mokshagundam
  • money
  • monopoly
  • mouse
  • movie
  • Movie Review
  • Mozilla
  • Mozilla Firefox
  • Mozilla Prism
  • mpaa
  • multiboot
  • MultiSystem
  • MWM
  • national health service
  • national security
  • nautilus
  • NCAA
  • ncurses
  • netbook
  • Netrunner
  • neutrino
  • new computer
  • new york
  • new york city
  • new zealand
  • newbie
  • news corp
  • NFL
  • NHS
  • NIST
  • normal distribution
  • novell
  • numbers
  • nutrition science
  • nutritionism
  • NVidia
  • NZCS
  • obama
  • okular
  • One
  • open standards
  • open-source
  • openbox
  • openoffice.org
  • opensolaris
  • openSUSE
  • Opera
  • oracle
  • Oxidized Trinity
  • P. W. Singer
  • panel
  • paramount
  • Pardus
  • parenting
  • parody
  • particle
  • patent
  • pay-to-pirate
  • PC-BSD
  • pclinuxos
  • pcmanfm
  • Pear OS
  • pearson education
  • Peppermint OS
  • Peter Pan
  • philosophy
  • Photograph 51
  • photonic
  • PHP
  • physics
  • pidgin
  • Pierce Brosnan
  • Pinguy OS
  • pink
  • Pink Floyd
  • piracy
  • plasma
  • plasmoid
  • poll
  • Porteus
  • power
  • power law
  • prejudice
  • presentation
  • president
  • president obama
  • presumption of innocence
  • Princeton
  • printing
  • prisoner
  • privacy
  • profit
  • programming
  • progress
  • Project Natal
  • promotion
  • proprietary
  • public domain
  • purpose
  • qed
  • QEMU
  • qt
  • quantum electrodynamics
  • quantum mechanics
  • radio
  • rape
  • Rawhide
  • Razor-Qt
  • red hat
  • Reflection
  • Rekonq
  • religion
  • Remastersys
  • rent
  • repossession
  • republican
  • retroactive copyright
  • review
  • rewards
  • RHEL
  • RIAA
  • Righthaven
  • RMA
  • robotics
  • rolling release
  • rootkit
  • ROSA
  • royalty
  • RPM
  • RSS
  • rule
  • rupert murdoch
  • sabayon
  • safari
  • saints
  • Salix OS
  • Samsung
  • sarah palin
  • Saudi Arabia
  • scanner
  • school
  • school network
  • science
  • Scientific Linux
  • security theater
  • selection
  • semester
  • Semplice
  • senior
  • Shiki
  • shooting
  • Shotwell
  • shut down
  • SI
  • sidux
  • Simon Singh
  • simplymepis
  • Skype
  • skyscraper
  • Slackware
  • slander
  • slashdot
  • social media
  • social policy
  • socialism
  • software patents
  • solar
  • SolusOS
  • SolydXK
  • sony
  • sony-bmg
  • SOPA
  • Source Code
  • SourceForge
  • SPARC
  • special effects
  • spying
  • spyware
  • Squeeze
  • SSH
  • Star Wars
  • State Department
  • statin
  • statistical mechanics
  • Statler
  • Stella
  • steve jobs
  • stewart
  • Stuxnet
  • subscriber
  • subsidy
  • substitute
  • sun
  • Sun Tzu
  • super bowl
  • Super Bowl XLV
  • super user
  • Suresh Kalmadi
  • survey
  • Symbicort
  • synaptic
  • tablet
  • Talledega Nights
  • tax
  • tech company
  • Tech Drive-in
  • techdirt
  • Technorati
  • Ted Williams
  • terrorist
  • thanksgiving
  • The Adjustment Bureau
  • The Amazing Race
  • The Art of War
  • The Code Book
  • The Drunkard's Walk
  • The King's Speech
  • The Social Network
  • the tunnel
  • the undercover economist
  • thermophotovoltaic
  • thunar
  • tim
  • Tim Harford
  • tint2
  • torrent
  • Toy Story 3
  • toyota
  • tracking device
  • trademark
  • train
  • treason
  • Trinity
  • Trisquel
  • trivial
  • troll
  • TSA
  • TuxMachines
  • Twitter
  • TWM
  • UberBang
  • ubuntu
  • ubuntu one
  • UK
  • unetbootin
  • unintended acceleration
  • units
  • Unity
  • Unixoid Review
  • UROP
  • US
  • utopia
  • V. S. Narayana Rao
  • VectorLinux
  • vegan
  • vegetarian
  • Verizon
  • vesa
  • Viewnior
  • ViewPad
  • ViewSonic
  • violation
  • virtual desktop
  • VirtualBox
  • virus
  • Visvesvaraya
  • vlc
  • warfare
  • water
  • WattOS
  • wavelength
  • Wayland
  • web-connected printer
  • webcam
  • WebOS
  • weekly
  • whistle
  • widget
  • wifi
  • wiki
  • Wikileaks
  • William Shakespeare
  • windowing system
  • WindowMaker
  • windows
  • windows 7
  • windows vista
  • windows xp
  • Wired for War
  • word
  • WordPress
  • world cup
  • Wubi
  • x11
  • XBMC
  • xbox360
  • xfce
  • xkcd
  • xp
  • yahoo
  • yoga
  • YouTube
  • YSA
  • Zenwalk
  • Zorin OS

Blog Archive

  • ▼  2013 (63)
    • ►  September (4)
    • ►  August (9)
    • ►  July (3)
    • ►  June (9)
    • ►  May (7)
    • ►  April (10)
    • ▼  March (11)
      • Featured Comments: Week of 2013 March 24
      • Review: Pardus 2013 KDE
      • Hamiltonian Density and the Stress-Energy Tensor
      • Schrödinger and Biot-Savart
      • Review: Linux Mint MATE 201303
      • Time and Temperature are Complex
      • Nonzero Electromagnetic Fields in a Cavity
      • A Less-Seen View of Angular Momentum
      • Frictions, Subsidies, and Taxes
      • More on 2012 Fall
      • More on My Photonic Crystal UROP
    • ►  February (6)
    • ►  January (4)
  • ►  2012 (85)
    • ►  December (4)
    • ►  November (3)
    • ►  October (2)
    • ►  September (6)
    • ►  August (8)
    • ►  July (12)
    • ►  June (12)
    • ►  May (7)
    • ►  April (6)
    • ►  March (6)
    • ►  February (9)
    • ►  January (10)
  • ►  2011 (179)
    • ►  December (5)
    • ►  November (8)
    • ►  October (9)
    • ►  September (12)
    • ►  August (15)
    • ►  July (15)
    • ►  June (15)
    • ►  May (16)
    • ►  April (15)
    • ►  March (19)
    • ►  February (21)
    • ►  January (29)
  • ►  2010 (173)
    • ►  December (24)
    • ►  November (23)
    • ►  October (34)
    • ►  September (36)
    • ►  August (15)
    • ►  July (18)
    • ►  June (13)
    • ►  May (8)
    • ►  April (2)
Powered by Blogger.

About Me

Unknown
View my complete profile